Media Portability Problem

- Media infrastructure portability is a multi-level industry problem
 - Media infrastructure is time-consuming and expensive to develop, integrate and program

- Media applications are not portable as proprietary hardware-centric libraries are needed to access media acceleration
- Difficult to flexibly integrate diverse, multi-vendor media components into complete media processing solutions
- Software components are not portable across processors - exacerbated by proliferation of media standards and increasing silicon complexity

Media Applications
Use media networks to deliver a compelling user experience

Media Graphs
Media components connected to process media in real-time

Media Components
Inputs, video codecs, image and sound libraries, outputs etc.

Media Infrastructure Stack
Hardware and software to deliver rich media processing solutions

Application programmers need a cross-platform portable API for controlling high-level media operations

System integrators need cross-vendor standard for media component integration with sophisticated data routing and robust synchronization

Software component & silicon vendors need a reliable way to accelerate diverse codecs on diverse silicon
OpenMAX - Three Layer Solution

OpenMAX defines three holistically designed media open standards to provide complete media infrastructure portability.

- **OpenMAX AL**
 - "Application Layer"
 - Media Application Portability
 - Applications programmed using cross-vendor interfaces

- **OpenMAX IL**
 - "Integration Layer"
 - Media Graph Portability
 - Integrate media networks using standard interconnect protocols

- **OpenMAX DL**
 - "Development Layer"
 - Media Component Portability
 - Develop portable media components using low-level media APIs

More media applications available on more platforms for more end-user value!

Portable and powerful media processing graphs can flexibly leverage available platform media components

Component vendors can ship more advanced functionality across more processors. Media silicon vendors reduce costs and time to market.

More media applications available on more platforms for more end-user value!
OpenMAX-based Media Stack

- **Application Layer**
 - Defines high-level playback and recording interface API
 - Media applications can be written portably, independent of the underlying media platform

- **Integration Layer**
 - Defines media component interfaces
 - Media components can be integrated into flexible media graphs for advanced streaming media processing

- **Development Layer**
 - Defines media primitives and concurrency constructs
 - Media components can be written using primitives for portability across diverse parallel and serial silicon architectures

- **Platform Media Framework**
 - Audio Components e.g. MP3
 - Video Components e.g. H.264
 - Image Components e.g. JPEG

- **Media Engines**
 - CPUs, DSP, Hardware Accelerators etc.

OpenMAX layers can be implemented together or independently from the other layers
Complete Khronos Media Stack

The Khronos API family provides a complete ROYALTY-FREE, cross-platform media acceleration platform.

<table>
<thead>
<tr>
<th>Applications or middleware libraries (JSR 184 engines, Flash players, media players etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>3D</td>
</tr>
<tr>
<td>Small footprint 3D for embedded systems</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Abtracted Access to OS Resources</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Khronos defines low-level, FOUNDATION-level APIs. “Close to the hardware” abstraction provides portability AND flexibility.
High-level Recording and playback API for application developers

Component network integration with Symbian MDF, GStreamer, DirectShow, MMAPI media frameworks

MPEG-4 / H.263 (encode & decode)
H.264 (encode & decode)

JPEG encode and decode, Color space conversion, packing/unpacking, De-blocking / de-ringing,
Camera processing, Simple rotation and scaling

MP3 and AAC, AMR-WB and AMR-NB for Mobile Phones, Portable Media Players and MP3 Players

Technical Sub-Groups (TSG) and Chairs as of February 2006
OpenMAX Summary

- **Three layer standard for media infrastructure portability**
 - Media component Development, Integration and Application programmability

- **Created with strong industry consensus and participation**
 - ARM, ATI, Beatnik, Broadcom, Emuzed, Fraunhofer, Freescale, Infineon, Intel, Motorola, Nokia, NVIDIA, Philips, SKY MobileMedia, Samsung, Sasken, Siemens, STMicroelectronics, Symbian, Texas Instruments

- **Specification is open and royalty-free using Khronos IP framework**
 - Delivered with sample implementations and conformance tests

- **Available on wide variety of architectures and operating systems**
 - To enable true streaming media portability

<table>
<thead>
<tr>
<th>Target Release Date</th>
<th>OpenMAX IL 1.0 Specification and Conformance Process Released</th>
<th>OpenMAX IL 1.0 Sample Implementation Released</th>
<th>OpenMAX IL 1.1 specification public release</th>
<th>OpenMAX AL 1.0 Specification Target Release Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>4Q05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Q06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Q06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Q06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Q06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integration Layer
OpenMAX IL - Integration Layer

• Defines component interfaces to construct portable media graphs
 - OpenMAX IL graphs are consistent across systems

• Abstracts hardware architecture
 - Processor specific code is encapsulated within components
 - Intelligently built components maximize system utilization

• Reusable integration with major media frameworks
 - Provides a uniform interface for framework integration across many architectures
 - Designed to sit below major frameworks - e.g. Symbian MDF, GStreamer, DirectShow, MMAPI
 - Defines a low level initialization and communication protocol

• Extensible
 - API extensions can be used to expose non standard features with only minor tweaks

• Media graph use cases can be reused
 - Use cases can be debugged in parallel on different projects and then shared

• Enables Performance Comparisons and Optimization
 - Common API allows benchmarking of different architectures, implementations and frameworks
 - Performance differences can be used by vendors to find areas for further optimization
OpenMAX IL Example Graph

- Standardized component interfaces enable flexible media graphs
- Includes multi-stream synchronization

Example: MPEG-4 video synchronized with AAC audio decode
OpenMAX IL Deliverables

- OpenMAX IL 1.0 specification
 - Publicly released

- Conformance Tests
 - Component based with two profiles
 - Base Profile - to test the component’s basic operation
 - Interop Profile - to test the component’s interoperable behavior with a test component
 - Conformance tests will be validated on independently developed sample implementations

- Implementation Whitepapers
 - Examples of how to implement Microsoft DirectShow, Symbian MMF, and GStreamer

- Linux sample implementation (coded by TI)
 - Video - H.263
 - Audio - Narrow Band AMR
 - Image - Baseline JPEG

- Bellagio OSS implementation (coded by ST)
 - ALSA and MP3 components (based on ffmpeg)
 - Available on Sourceforge
OpenMAX Architecture & Features

• Objectives & Profiles
• System Architecture
• Component Architecture
• Component Registration
• Component States
• In-Context/Out-Context Behavior
• Buffer Allocation & Sharing
• Port Reconnection

• Buffer Queue Flush
• Buffer Marking
• Buffer Payload
• Buffer Flags
• Synchronization
• Rate Control
• Resource Management
• Future Features
Tentative OpenMAX IL Roadmap

• Standard Components
 - Set of group defined components

• OS Services
 - File I/O, Network I/O, Scheduling, Memory Management

• Security
 - DRM, Platform

• Power Management
 - Metrics, Hooks

• Resource Management
 - Metrics, Hooks

OpenMAX IL 1.0 specification public release

1Q06

Final Input for OpenMAX IL 1.1 Received

2Q06

OpenMAX IL 1.1 specification public release

3Q06

4Q06

© Copyright Khronos Group, 2006 - Page 13
Development Layer
OpenMAX DL – Low-Level Media API

- OpenMAX DL is a library of key static primitive functions
 - Designed to cover 80% of the processing required in a multimedia codec

- Abstracts the ISA from the multimedia codec
 - Enables faster codec development time and faster porting of existing codecs

- Enables third party codec vendors to sell processor-agnostic codecs
 - Multi-core architectures (i.e. ARM + DSP) gain greater code reuse between cores

An increasing number of multimedia API codecs for video, audio, graphics and images

Silicon vendors supply optimized OpenMAX DL library for rapid porting of codecs across multiple accelerators

A wide range of media acceleration silicon using many diverse architectures
OpenMAX DL Domains

- **Video Domain**
 - MPEG-4 SP/H.263 BL (encode and decode)
 - H.264 (encode and decode)

- **Image Codec Domain**
 - JPEG (encode and decode)

- **Image Processing Domain**
 - Color space conversion
 - Pixel packing/unpacking
 - De-blocking / de-ringing
 - Rotation, scaling, compositing, etc.

- **Multimedia Audio Domain**
 - MP3
 - AAC

- **Signal Processing Domain**
 - FIR
 - IIR
 - FFT
 - Dot Product
OpenMAX – Asynchronous DL (aDL)

- API to group or chain multiple DL primitives together
 - To form a single executing block
- Enables vendors to accelerate key groups of primitives through:
 - Specialized hardware
 - Co-processors
 - Hand-coded ISA optimizations
- Enables a standard migration path between platforms
 - With pure software and tightly coupled hardware
- OpenMAX iDL
 - Achieves same effect as OpenMAX aDL using OpenMAX IL constructs
OpenMAX DL Video Domain

- Computationally intensive “hotspots” for video applications
 - Basic video processing building blocks

- Typical devices
 - Digital still cameras, PDAs, Mobile Phones, Portable Media Players, Set-top-boxes, PCs, etc.

- Example video primitive functions in OpenMAX DL 1.0
 - 8x8 Add, Sub and 16X16 Add, Sub
 - 8x8 DCT+Q+Scan and 8x8 IDCT+Q+InvScan
 - MPEG-4 Variable Length Decode

- Merged functions for improved performance on some architectures
 - Motion Estimation, Motion Compensation, Debloating

- Video codecs covered by OpenMAX DL 1.0
 - MPEG-4 SP/H.263 BL (encode & decode)
 - H.264 (encode and decode)

- Can use aDL and iDL for video processing
 - OpenMAX DL 1.1 will publish standard DL chains for aDL wrappers
OpenMAX DL Image Domain

• Computationally intensive “hotspots” for imaging applications
 - Basic image processing building blocks

• Typical devices
 - Digital still cameras, PDAs, Mobile Phones, Set-top-boxes, PCs, Printers etc.

• Example image primitive functions in OpenMAX DL 1.0
 - JPEG - encode and decode, 8x8 DCT and 8x8 IDCT, Quantization
 Merged DCT & quantization functions, Huffman encoding and decoding
 - Image Processing - color space conversion and packing/unpacking
 De-blocking / de-ringing filtering, Filtering, Moments, Block copy, rotation, mirroring and scaling

• OpenMAX DL 1.1 will widen image functionality
 - JPEG2000
 - Image Blending
 - Raw Camera data processing etc…
OpenMAX DL Speech / Audio Domain

- Computationally intensive “hotspots” for audio applications
 - Speech codecs are not supported since the standards are bit-exact
 - Other speech applications are supported indirectly with some signal processing APIs

- Typical devices
 - PDAs, Mobile Phones, Portable Media Players etc.

- Example speech / audio primitive functions in OpenMAX DL 1.0
 - Audio API - Unpacking of headers and bit-streams, Huffman decode, IMDCT and MDCT
 Polyphase filter, TNS and PNS processing
 - Signal Processing API - FFT and IFFT, FIR, IIR and Median filters, Dot product,
 Block exponent (finding minimal sign bits in array elements)

- Example uses
 - MP3 decoder, including low frequencies extensions, MPEG4-AAC decoder (LC/L TP profiles),
 Signal processing (FFT, digital filters, some math)

- OpenMAX DL 1.1 will widen functionality
 - Audio encoders
 - EAAC, EAAC+
 - LMS filters
 - Voice Recognition front-end …
Application Layer
OpenMAX AL - Application Level

- Enabling application developers to easily leverage OpenMax acceleration
 - A simple high-level interface for common multimedia playback and capture use cases

- Typical applications are found in:
 - Mobile Phones
 - Mobile Music/Video Players
 - PDAs
 - Digital still cameras
 - Digital Media Adapters
 - STBs, PCs, etc…
OpenMAX AL 1.0 – Scope

• Standard use cases
 - Playback: play a video file, play a music file, display an image file
 - Recording: record a video file, record an audio file, capture an image file

• Operational controls
 - Playback: play, pause, stop, FF, RW
 - Recording: record, stop

• Configuration control
 - Audio output: volume, channels, etc
 - Video output: video window position, size, etc

• Metadata controls
 - Extract metadata from a playing stream
 - Insert metadata into a recording stream
OpenMAX AL - Milestones

• OpenMAX AL Taskforce formed in November 2005
 - Membership included: ATI, Beatnik, Freescale, Nokia, NVIDIA, Symbian, SkyMobile Media, TI
 - Scoped intended functionality and investigated alternative solutions
 - Recommended formation of an OpenMax AL working group

• OpenMAX AL Working Group formed in December 2005
 - Call for widened working group participation
 - Official scope/requirements definition at face to face meeting in January 2006

OpenMAX AL Working Group Established
Targeting Specification lock down
Targeting Specification Ratification and completion of Conformance Tests
Publicly Release OpenMAX AL 1.0 Initial implementations available

1Q06 2Q06 3Q06 4Q06